Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available December 9, 2025
-
Free, publicly-accessible full text available November 18, 2025
-
Today’s large-scale services (e.g., video streaming platforms, data centers, sensor grids) need diverse real-time summary statistics across multiple subpopulations of multidimensional datasets. However, state-of-the-art frameworks do not offer general and accurate analytics in real time at reasonable costs. The root cause is the combinatorial explosion of data subpopulations and the diversity of summary statistics we need to monitor simultaneously. We present Hydra, an efficient framework for multidimensional analytics that presents a novel combination of using a “sketch of sketches” to avoid the overhead of monitoring exponentially-many subpopulations and universal sketching to ensure accurate estimates for multiple statistics. We build Hydra as an Apache Spark plugin and address practical system challenges to minimize overheads at scale. Across multiple real-world and synthetic multidimensional datasets, we show that Hydra can achieve robust error bounds and is an order of magnitude more efficient in terms of operational cost and memory footprint than existing frameworks (e.g., Spark, Druid) while ensuring interactive estimation times.more » « less
-
Software switches are emerging as a vital measurement vantage point in many networked systems. Sketching algorithms or sketches, provide high-fidelity approximate measurements, and appear as a promising alternative to traditional approaches such as packet sampling. However, sketches incur significant computation overhead in software switches. Existing efforts in implementing sketches in virtual switches make sacrifices on one or more of the following dimensions: performance (handling 40 Gbps line-rate packet throughput with low CPU footprint), robustness (accuracy guarantees across diverse workloads), and generality (supporting various measurement tasks). In this work, we present the design and implementation of NitroSketch, a sketching framework that systematically addresses the performance bottlenecks of sketches without sacrificing robustness and generality. Our key contribution is the careful synthesis of rigorous, yet practical solutions to reduce the number of per-packet CPU and memory operations. We implement NitroSketch on three popular software platforms (Open vSwitch-DPDK, FD.io-VPP, and BESS) and evaluate the performance. We show that accuracy is comparable to unmodified sketches while attaining up to two orders of magnitude speedup, and up to 45% reduction in CPU usage.more » « less
An official website of the United States government

Full Text Available